Modularized Evolution in Archaeal Methanogens Phylogenetic Forest

نویسندگان

  • Jun Li
  • Chi-Fat Wong
  • Mabel Ting Wong
  • He Huang
  • Frederick C. Leung
چکیده

Methanogens are methane-producing archaea that plays a key role in the global carbon cycle. To date, the evolutionary history of methanogens and closely related nonmethanogen species remains unresolved among studies conducted upon different genetic markers, attributing to horizontal gene transfers (HGTs). With an effort to decipher both congruent and conflicting evolutionary events, reconstruction of coevolved gene clusters and hierarchical structure in the archaeal methanogen phylogenetic forest, comprehensive evolution, and network analyses were performed upon 3,694 gene families from 41 methanogens and 33 closely related archaea. Our results show that 1) greater than 50% of genes are in topological dissonance with others; 2) the prevalent interorder HGTs, even for core genes, in methanogen genomes led to their scrambled phylogenetic relationships; 3) most methanogenesis-related genes have experienced at least one HGT; 4) greater than 20% of the genes in methanogen genomes were transferred horizontally from other archaea, with genes involved in cell-wall synthesis and defense system having been transferred most frequently; 5) the coevolution network contains seven statistically robust modules, wherein the central module has the highest average node strength and comprises a majority of the core genes; 6) different coevolutionary module genes boomed in different time and evolutionary lineage, constructing diversified pan-genome structures; 7) the modularized evolution is also closely related to the vertical evolution signals and the HGT rate of the genes. Overall, this study presented a modularized phylogenetic forest that describes a combination of complicated vertical and nonvertical evolutionary processes for methanogenic archaeal species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm.

This study compared soil archaeal communities of the Amazon forest with that of an adjacent area under oil palm cultivation by 16S ribosomal RNA gene pyrosequencing. Species richness and diversity were greater in native forest soil than in the oil palm-cultivated area, and 130 OTUs (13.7%) were shared between these areas. Among the classified sequences, Thaumarchaeota were predominant in the na...

متن کامل

Extending the conserved phylogenetic core of archaea disentangles the evolution of the third domain of life.

Initial studies of the archaeal phylogeny relied mainly on the analysis of the RNA component of the small subunit of the ribosome (SSU rRNA). The resulting phylogenies have provided interesting but partial information on the evolutionary history of the third domain of life because SSU rRNA sequences do not contain enough phylogenetic signal to resolve all nodes of the archaeal tree. Thus, many ...

متن کامل

Recovery and phylogenetic analysis of archaeal rRNA sequences from continental shelf sediments.

Phylogenetic analyses of archaeal 16S rRNA genes (rDNA) from DNA extracted from continental shelf sediments revealed the presence of two major lineages, belonging to the kingdoms Crenarchaeota and Euryarchacota, respectively. Our analyses indicate that the benthic Archaea belong to a new group, divergent from the marine low-temperature planktonic Archaea. This is the first report showing the ex...

متن کامل

Search for a 'Tree of Life' in the thicket of the phylogenetic forest

BACKGROUND Comparative genomics has revealed extensive horizontal gene transfer among prokaryotes, a development that is often considered to undermine the 'tree of life' concept. However, the possibility remains that a statistical central trend still exists in the phylogenetic 'forest of life'. RESULTS A comprehensive comparative analysis of a 'forest' of 6,901 phylogenetic trees for prokaryo...

متن کامل

Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp. nov.

Methanogenesis in cold marine sediments is a globally important process leading to methane hydrate deposits, cold seeps, physical instability of sediment, and atmospheric methane emissions. We employed a multidisciplinary approach that combined culture-dependent and -independent analyses with geochemical measurements in the sediments of Skan Bay, Alaska (53 degrees N, 167 degrees W), to investi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014